If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=93
We move all terms to the left:
x^2+10x-(93)=0
a = 1; b = 10; c = -93;
Δ = b2-4ac
Δ = 102-4·1·(-93)
Δ = 472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{472}=\sqrt{4*118}=\sqrt{4}*\sqrt{118}=2\sqrt{118}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{118}}{2*1}=\frac{-10-2\sqrt{118}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{118}}{2*1}=\frac{-10+2\sqrt{118}}{2} $
| 27=(x-4)+8 | | 4x-27=-1 | | 4y+29=69 | | 3x+30+40=180 | | 4(x^2-4)=(2x)^2+8x | | 7(7c+1)-4c=13(3c-21 | | 1/5x-(2/5)=2/5x+7-(2/5x) | | 18-1/2x=36 | | w4-16=9 | | 6x2+14x-40=0 | | 91+6x=-36 | | -8303x=72 | | 17×b=7 | | 49+7x=36 | | 15×n=3 | | 46+8x=-83 | | 39-2x=17 | | ¾x+12=32 | | 5(5x+2)=-7x-8 | | 3/4x+12=32 | | 63-5x=-42 | | 1/5x=2/5x+7 | | 8y+28=-16 | | –10p=4(–3p−6) | | 8y+4=-16 | | y+10=y-19 | | 2(4x-3)=10x+3 | | 0=640-16t^2 | | -5x-(-4x)=-4x+6.5-(-4x) | | 9z()=36() | | |2x-4|=|5x-7| | | 9y+7=-11 |